
PhD project (2025-2028):
Point Spread Function Modelling for Space Telescopes

with a Differentiable Optical Model

Keywords: Machine learning, Inverse problems in imaging, Instrumental response modelling

Context
Weak gravitational lensing [1] is a powerful probe of the Large Scale Structure of our Universe. Cosmologists
use weak lensing to study the nature of dark matter and its spatial distribution. Weak lensing missions require
highly accurate shape measurements of galaxy images. The instrumental response of the telescope, called the
point spread function (PSF), produces a deformation of the observed images. This deformation can be mistaken
for the effects of weak lensing in the galaxy images, thus being one of the primary sources of systematic error
when doing weak lensing science. Therefore, estimating a reliable and accurate PSF model is crucial for the
success of any weak lensing mission [2]. The PSF field can be interpreted as a convolutional kernel that affects
each of our observations of interest, which varies spatially, spectrally, and temporally. The PSF model needs to
be able to cope with each of these variations. We use specific stars considered point sources in the field of view
to constrain our PSF model. These stars, which are unresolved objects, provide us with degraded samples of
the PSF field. The observations go through different degradations depending on the properties of the telescope.
These degradations include undersampling, integration over the instrument passband, and additive noise. We
finally build the PSF model using these degraded observations and then use the model to infer the PSF at the
position of galaxies. This procedure constitutes the ill-posed inverse problem of PSF modelling. See [3] for a
recent review on PSF modelling.

The recently launched Euclid survey represents one of the most complex challenges for PSF modelling. Because
of the very broad passband of Euclid ’s visible imager (VIS) ranging from 550nm to 900nm, PSF models need to
capture not only the PSF field spatial variations but also its chromatic variations. Each star observation is inte-
grated with the object’s spectral energy distribution (SED) over the whole VIS passband. As the observations
are undersampled, a super-resolution step is also required. A recent model coined WaveDiff [4] was proposed to
tackle the PSF modelling problem for Euclid and is based on a differentiable optical model. WaveDiff achieved
state-of-the-art performance and is currently being tested with recent observations from the Euclid survey.

The James Webb Space Telescope (JWST) was recently launched and is producing outstanding observations.
The COSMOS-Web collaboration [5] is a wide-field JWST treasury program that maps a contiguous 0.6 deg2
field. The COSMOS-Web observations are available and provide a unique opportunity to test and develop a
precise PSF model for JWST. In this context, several science cases, on top of weak gravitational lensing studies,
can vastly profit from a precise PSF model. For example, strong gravitational lensing [6], where the PSF plays
a crucial role in reconstruction, and exoplanet imaging [7], where the PSF speckles can mimic the appearance
of exoplanets, therefore subtracting an accurate and precise PSF model is essential to improve the imaging and
detection of exoplanets.

PhD project
The candidate will aim to develop more accurate and performant PSF models for space-based tele-
scopes exploiting a differentiable optical framework and focus the effort on Euclid and JWST.

The WaveDiff model is based on the wavefront space and does not consider pixel-based or detector-level effects.
These pixel errors cannot be modelled accurately in the wavefront as they naturally arise directly on the detectors
and are unrelated to the telescope’s optic aberrations. Therefore, as a first direction, we will extend the PSF
modelling approach, considering the detector-level effect by combining a parametric and data-
driven (learned) approach. We will exploit the automatic differentiation capabilities of machine learning
frameworks (e.g. TensorFlow, Pytorch, JAX) of the WaveDiff PSF model to accomplish the objective.

As a second direction, we will consider the joint estimation of the PSF field and the stellar Spectral

1



Energy Densities (SEDs) by exploiting repeated exposures or dithers. The goal is to improve and calibrate
the original SED estimation by exploiting the PSF modelling information. We will rely on our PSF model, and
repeated observations of the same object will change the star image (as it is imaged on different focal plane
positions) but will share the same SEDs.

Another direction will be to extend WaveDiff for more general astronomical observatories like JWST
with smaller fields of view. We will need to constrain the PSF model with observations from several bands to
build a unique PSF model constrained by more information. The objective is to develop the next PSF model
for JWST that is available for widespread use, which we will validate with the available real data from the
COSMOS-Web JWST program.

The following direction will be to extend the performance of WaveDiff by including a continuous field in the form
of an implicit neural representations [8], or neural fields (NeRF) [9], to address the spatial variations of
the PSF in the wavefront space with a more powerful and flexible model.

Finally, throughout the PhD, the candidate will collaborate on Euclid’s data-driven PSF modelling
effort, which consists of applying WaveDiff to real Euclid data, and the COSMOS-Web collaboration to
exploit JWST observations.

The applicant profile
The successful candidate should have an M2 master or an engineering diploma degree, with a specialisation on
signal processing/statistics/machine learning or astrophysics. Basic knowledge of statistical inference, signal
processing, and machine learning is expected. The candidate should be comfortable with software development
(at least in Python) and, ideally, be familiar with a deep learning framework (e.g. TensorFlow, PyTorch, JAX).
Experience with open-source and collaborative development tools (e.g. GitHub) is desirable. The research team
is international, so speaking French is not a requirement.

Collaborations
The candidate will be a member of the Euclid consortium and participate in the data-driven PSF modelling
effort.

Scientific environment
The successful candidate will be based in the ALEPH group from the DEDIP department of the IRFU institute
from the CEA Paris-Saclay research centre and the CosmoStat laboratory from the UMR (Unité Mixte de
Recherche) AIM (Astrophysique, Instrumentation, Modélisation) which is located 20km south of central Paris
in the Paris-Saclay cluster. The PhD supervision will be assured by Dr. Francois Lanusse and Dr. Tobías
I. Liaudat. The CosmoStat laboratory has a long tradition of developing cutting-edge statistical tools for
the analysis of astronomical and cosmological data and is heavily involved in several projects including the
ESA Euclid space telescope. The ALPEH group focuses on signal (and image) processing and machine learning
applied to astrophysics applications including gravitational wave data analysis and radio interferometric imaging.
The candidate will be able to benefit from the expertise of the growing machine learning and artificial intelligence
community on the Saclay plateau.

Computational resources The successful candidate will have access to the Jean Zay supercomputer, largest
GPU cluster for research in France (which has recently been upgraded with 1400 H100 GPUs), as well as the
IRFU’s CPU cluster. Most of the development will rely on GPUs.

Contact
− Dr. François Lanusse (francois.lanusse@cnrs.fr)

− Dr. Tobías I. Liaudat (tobias.liaudat@cea.fr)

The deadline for applications is the 1st April 2025.
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https://www.cosmostat.org
https://flanusse.net/
https://tobias-liaudat.github.io/
https://tobias-liaudat.github.io/
http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-hw.html
mailto:francois.lanusse@cnrs.fr
mailto:tobias.liaudat@cea.fr


Application Please send an application by email with a subject starting with [PhD-PSF] to francois.lanusse@cnrs.fr
and tobias.liaudat@cea.fr, including: a CV, a transcript of grades, and the names and addresses of at least one
reference (max. 2), which will be later asked for a recommendation letter.
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