Sparse reconstruction of the merging A520 cluster system

Share this post on:

Sparse reconstruction of the merging A520 cluster system

 

Authors: A. Peel, F. Lanusse, J.-L. Starck
Journal: ApJ
Year: 08/2017
Download: ADS| Arxiv


Abstract

Merging galaxy clusters present a unique opportunity to study the properties of dark matter in an astrophysical context. These are rare and extreme cosmic events in which the bulk of the baryonic matter becomes displaced from the dark matter halos of the colliding subclusters. Since all mass bends light, weak gravitational lensing is a primary tool to study the total mass distribution in such systems. Combined with X-ray and optical analyses, mass maps of cluster mergers reconstructed from weak-lensing observations have been used to constrain the self-interaction cross-section of dark matter. The dynamically complex Abell 520 (A520) cluster is an exceptional case, even among merging systems: multi-wavelength observations have revealed a surprising high mass-to-light concentration of dark mass, the interpretation of which is difficult under the standard assumption of effectively collisionless dark matter. We revisit A520 using a new sparsity-based mass-mapping algorithm to independently assess the presence of the puzzling dark core. We obtain high-resolution mass reconstructions from two separate galaxy shape catalogs derived from Hubble Space Telescope observations of the system. Our mass maps agree well overall with the results of previous studies, but we find important differences. In particular, although we are able to identify the dark core at a certain level in both data sets, it is at much lower significance than has been reported before using the same data. As we cannot confirm the detection in our analysis, we do not consider A520 as posing a significant challenge to the collisionless dark matter scenario.

Share this post on:

Author: Samuel Farrens

I have been a postdoctoral researcher at CEA Saclay since October 2015. I am currently working on the DEDALE project and the Euclid mission with Jean-Luc Starck.

My background is in optical detection of clusters of galaxies and photometric redshift estimation. I am now branching out into the field of PSF estimation using sparse signal processing techniques.

View all posts by Samuel Farrens >