Feasibility and performances of compressed-sensing and sparse map-making with Herschel/PACS data

Share this post on:

 

Authors: N. Barbey, M. Sauvage, J.-L. Starck, R. Ottensamer, P. Chanial
Journal: A&A
Year: 2011
Download: ADS | arXiv


Abstract

The Herschel Space Observatory of ESA was launched in May 2009 and is in operation since. From its distant orbit around L2 it needs to transmit a huge quantity of information through a very limited bandwidth. This is especially true for the PACS imaging camera which needs to compress its data far more than what can be achieved with lossless compression. This is currently solved by including lossy averaging and rounding steps on board. Recently, a new theory called compressed-sensing emerged from the statistics community. This theory makes use of the sparsity of natural (or astrophysical) images to optimize the acquisition scheme of the data needed to estimate those images. Thus, it can lead to high compression factors.
A previous article by Bobin et al. (2008) showed how the new theory could be applied to simulated Herschel/PACS data to solve the compression requirement of the instrument. In this article, we show that compressed-sensing theory can indeed be successfully applied to actual Herschel/PACS data and give significant improvements over the standard pipeline. In order to fully use the redundancy present in the data, we perform full sky map estimation and decompression at the same time, which cannot be done in most other compression methods. We also demonstrate that the various artifacts affecting the data (pink noise, glitches, whose behavior is a priori not well compatible with compressed-sensing) can be handled as well in this new framework. Finally, we make a comparison between the methods from the compressed-sensing scheme and data acquired with the standard compression scheme. We discuss improvements that can be made on ground for the creation of sky maps from the data.

Share this post on:

Author: Samuel Farrens

I have been a postdoctoral researcher at CEA Saclay since October 2015. I am currently working on the DEDALE project and the Euclid mission with Jean-Luc Starck.

My background is in optical detection of clusters of galaxies and photometric redshift estimation. I am now branching out into the field of PSF estimation using sparse signal processing techniques.

View all posts by Samuel Farrens >